把Model类放在training.py文件中,说明它肯定与训练有关,由下面Model的定义我们知道,它继承自Network,所以,Model具有Network和训练的功能,此外它还具有什么功能呢?
在Model类主要有四大功能模块: compile, fit, evaluate和predict。下面,我们来一步步解析。
class Model(Network):
一、compile:模型编译。用于配置训练模型。用compile接受的每一个参数对model进行配置。
def compile(self, optimizer, loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None, **kwargs): self.optimizer = optimizers.get(optimizer) self.loss = loss or [] self.metrics = metrics or [] self.loss_weights = loss_weights self.sample_weight_mode = sample_weight_mode self.weighted_metrics = weighted_metrics处理参数loss,准备损失函数(loss functions)。有2种情形:
(1) 传入的loss是个损失函数的字典或列表,它对应着模型的多个输出,在每个输出上使用不同的损失;
(2) loss只是一个损失函数的名称,如果模型有多个输出,则所有的输出都使用相同的损失函数。
不管是哪种,模型最小化的损失值将是所有单个损失的总和。
if isinstance(loss, dict): loss_functions = [] for name in self.output_names: loss_functions.append(losses.get(loss.get(name))) elif isinstance(loss, list): loss_functions = [losses.get(l) for l in loss] else: loss_function = losses.get(loss) loss_functions = [loss_function for _ in range(len(self.outputs))] self.loss_functions = loss_functions weighted_losses = [ weighted_masked_objective(fn) for fn in loss_functions] skip_target_indices = [] skip_target_weighing_indices = [] self._feed_outputs = [] self._feed_output_names = [] self._feed_output_shapes = [] self._feed_loss_fns = [] for i in range(len(weighted_losses)): if weighted_losses[i] is None: skip_target_indices.append(i) skip_target_weighing_indices.append(i)处理损失权重loss_weights,它是用以衡量损失函数对不同的模型输出的贡献。 模型将最小化的误差值是由 loss_weights 对每个输出上的损失进行加权的加权总和误差。
if loss_weights is None: loss_weights_list = [1. for _ in range(len(self.outputs))] elif isinstance(loss_weights, dict): loss_weights_list = [] for name in self.output_names: loss_weights_list.append(loss_weights.get(name, 1.)) elif isinstance(loss_weights, list): loss_weights_list = loss_weights else: raise TypeError('Could not interpret loss_weights argument: ')处理target_tensors,创建模型的目标(targets of model)。
如果传入的参数target_tensors不为None,即下面的code,说明要使用外部指定的目标张量,它可以是单个张量(单输出模型),张量列表,或一个映射输出名称到目标张量的字典。
self.targets = [] self._feed_targets = [] if target_tensors is not None: if isinstance(target_tensors, list): elif isinstance(target_tensors, dict): tmp_target_tensors = [] for name in self.output_names: tmp_target_tensors.append(target_tensors.get(name, None)) target_tensors = tmp_target_tensors elif K.is_tensor(target_tensors): target_tensors = [target_tensors] else: raise TypeError('Expected `target_tensors` to be a tensor')如果target_tensors为None(默认情况),更或者是其中的某个为None,Keras 将为模型的目标创建一个占位符,在训练过程中将使用目标数据。
for i in range(len(self.outputs)): if i in skip_target_indices: self.targets.append(None) else: shape = K.int_shape(self.outputs[i]) name = self.output_names[i] if target_tensors is not None: target = target_tensors[i] else: target = None if target is None or K.is_placeholder(target): if target is None: target = K.placeholder( ndim=len(shape), name=name + '_target', sparse=K.is_sparse(self.outputs[i]), dtype=K.dtype(self.outputs[i])) self._feed_targets.append(target) self._feed_outputs.append(self.outputs[i]) self._feed_output_names.append(name) self._feed_output_shapes.append(shape) self._feed_loss_fns.append(self.loss_functions[i]) else: skip_target_weighing_indices.append(i) self.targets.append(target)处理样本权重模式sample_weight_mode,有两种情况:
(1) temporal: 即表示要执行按时间步采样权重(2D权重);
(2) None,这是默认,为采样权重(1D)。
如果模型有多个输出,则可以传递一个 mode 字典或列表,以指示在每个输出上使用指定的sample_weight_mode。
sample_weights = [] sample_weight_modes = [] if isinstance(sample_weight_mode, dict): for i, name in enumerate(self.output_names): if i in skip_target_weighing_indices: weight = None sample_weight_modes.append(None) else: if sample_weight_mode.get(name) == 'temporal': weight = K.placeholder(ndim=2, name=name + '_sample_weights') sample_weight_modes.append('temporal') else: weight = K.placeholder(ndim=1, name=name + '_sample_weights') sample_weight_modes.append(None) sample_weights.append(weight) elif isinstance(sample_weight_mode, list): for i in range(len(self.output_names)): if i in skip_target_weighing_indices: weight = None sample_weight_modes.append(None) else: mode = sample_weight_mode[i] name = self.output_names[i] if mode == 'temporal': weight = K.placeholder(ndim=2, name=name + '_sample_weights') sample_weight_modes.append('temporal') else: weight = K.placeholder(ndim=1, name=name + '_sample_weights') sample_weight_modes.append(None) sample_weights.append(weight) else: for i, name in enumerate(self.output_names): if i in skip_target_weighing_indices: sample_weight_modes.append(None) sample_weights.append(None) else: if sample_weight_mode == 'temporal': sample_weights.append( K.placeholder(ndim=2, name=name + '_sample_weights')) sample_weight_modes.append('temporal') else: sample_weights.append( K.placeholder(ndim=1, name=name + '_sample_weights')) sample_weight_modes.append(None) self.sample_weight_modes = sample_weight_modes self._feed_sample_weight_modes = [] for i in range(len(self.outputs)): if i not in skip_target_weighing_indices: self._feed_sample_weight_modes.append( self.sample_weight_modes[i]) self.metrics_names = ['loss'] self.metrics_tensors = []计算总损失(total loss): dot(output_loss, loss_weight) + self.losses
total_loss = None with K.name_scope('loss'): for i in range(len(self.outputs)): if i in skip_target_indices: continue y_true = self.targets[i] y_pred = self.outputs[i] weighted_loss = weighted_losses[i] sample_weight = sample_weights[i] mask = masks[i] loss_weight = loss_weights_list[i] with K.name_scope(self.output_names[i] + '_loss'): output_loss = weighted_loss(y_true, y_pred, sample_weight, mask) if len(self.outputs) > 1: self.metrics_tensors.append(output_loss) self.metrics_names.append(self.output_names[i] + '_loss') if total_loss is None: total_loss = loss_weight * output_loss else: total_loss += loss_weight * output_loss if total_loss is None: if not self.losses: raise ValueError('The model cannot be compiled ' 'because it has no loss to optimize.') else: total_loss = 0. for loss_tensor in self.losses: total_loss += loss_tensor处理metrics,metrics指定了训练和测试期间的模型评估指标。可以为多输出模型的不同输出指定不同的评估指标,它可以是一个dict字典或list列表,如 metrics = {'output_a':'accuracy'}。通常指标名称可以用全名,如:accuracy,crossentropy等,也可能简写,如:acc,ce等。
nested_metrics = collect_metrics(metrics, self.output_names) nested_weighted_metrics = collect_metrics(weighted_metrics, self.output_names) self.metrics_updates = [] self.stateful_metric_names = [] self.stateful_metric_functions = [] def handle_metrics(metrics, weights=None): metric_name_prefix = 'weighted_' if weights is not None else '' for metric in metrics: if metric in ('accuracy', 'acc', 'crossentropy', 'ce'): output_shape = K.int_shape(self.outputs[i]) if (output_shape[-1] == 1 or self.loss_functions[i] == losses.binary_crossentropy): if metric in ('accuracy', 'acc'): metric_fn = metrics_module.binary_accuracy elif metric in ('crossentropy', 'ce'): metric_fn = metrics_module.binary_crossentropy elif (self.loss_functions[i] == losses.sparse_categorical_crossentropy): if metric in ('accuracy', 'acc'): metric_fn = metrics_module.sparse_categorical_accuracy elif metric in ('crossentropy', 'ce'): metric_fn = ( metrics_module.sparse_categorical_crossentropy) else: if metric in ('accuracy', 'acc'): metric_fn = metrics_module.categorical_accuracy elif metric in ('crossentropy', 'ce'): metric_fn = metrics_module.categorical_crossentropy if metric in ('accuracy', 'acc'): suffix = 'acc' elif metric in ('crossentropy', 'ce'): suffix = 'ce' weighted_metric_fn = weighted_masked_objective(metric_fn) metric_name = metric_name_prefix + suffix else: metric_fn = metrics_module.get(metric) weighted_metric_fn = weighted_masked_objective(metric_fn) if hasattr(metric_fn, 'name'): metric_name = metric_fn.name else: metric_name = metric_fn.__name__ metric_name = metric_name_prefix + metric_name with K.name_scope(metric_name): metric_result = weighted_metric_fn(y_true, y_pred, weights=weights, mask=masks[i]) if len(self.output_names) > 1: metric_name = self.output_names[i] + '_' + metric_name j = 1 base_metric_name = metric_name while metric_name in self.metrics_names: metric_name = base_metric_name + '_' + str(j) j += 1 self.metrics_names.append(metric_name) self.metrics_tensors.append(metric_result) if isinstance(metric_fn, Layer) and metric_fn.stateful: self.stateful_metric_names.append(metric_name) self.stateful_metric_functions.append(metric_fn) self.metrics_updates += metric_fn.updates with K.name_scope('metrics'): for i in range(len(self.outputs)): if i in skip_target_indices: continue y_true = self.targets[i] y_pred = self.outputs[i] weights = sample_weights[i] output_metrics = nested_metrics[i] output_weighted_metrics = nested_weighted_metrics[i] handle_metrics(output_metrics) handle_metrics(output_weighted_metrics, weights=weights) 为梯度和状态更新做准备 self.total_loss = total_loss self.sample_weights = sample_weights self._feed_sample_weights = [] for i in range(len(self.sample_weights)): if i not in skip_target_weighing_indices: self._feed_sample_weights.append(sample_weights[i]) 为了节省时间,对于训练函数、测试函数和预测函数设置的惰性编译 self._function_kwargs = kwargs self.train_function = None self.test_function = None self.predict_function = None trainable_weights = self.trainable_weights self._collected_trainable_weights = trainable_weights
二、fit:模型训练。在所有的fit参数中,x为训练数据,y为标签数据,validation_split指定有多少比例的训练数据用作验证数据,validation_data为验证数据集,epochs为训练轮次,batch_size为批大小。
def fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0., validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, **kwargs): 对用户输入的数据进行校验,并转换成适合模型处理的标准数据格式 x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight, class_weight=class_weight, batch_size=batch_size)
处理验证数据:有两种情况:
(1)是否需要验证:通过置do_validation决定,缺省是False,即不需要;但如果传入了参数validation_data或者validation_split或者validation_steps,则do_validation=True,意味着需要验证;
(2)验证数据产生,与下面if分支相对应:
a)由参数validation_data直接传入;否则
b)由validation_split指定一个划分比例,从训练数据中分出一部分作为验证数据;否则
c)当指定了validation_steps,一般与steps_per_epoch结合使用,这里validation_data则为测试数据和验证数据的生成器,本参数指定验证数据生成器的返回次数。
验证函数的输入是这种形式的元组:(val_x, val_y, val_sample_weights)或者(val_x, val_y, val_sample_weights, lr),其中,val_x: 验证数据, val_y: 验证数据标签, val_sample_weights: 样本权重, lr: 学习速率。
do_validation = False if validation_data: do_validation = True if len(validation_data) == 2: val_x, val_y = validation_data val_sample_weight = None elif len(validation_data) == 3: val_x, val_y, val_sample_weight = validation_data else: raise ValueError('When passing validation_data, ' 'it must contain 2 (x_val, y_val) ' 'or 3 (x_val, y_val, val_sample_weights) ' 'items, however it contains %d items' % len(validation_data)) val_x, val_y, val_sample_weights = self._standardize_user_data( val_x, val_y, sample_weight=val_sample_weight, batch_size=batch_size) if self._uses_dynamic_learning_phase(): val_inputs = val_x + val_y + val_sample_weights + [0.] else: val_inputs = val_x + val_y + val_sample_weights elif validation_split and 0. < validation_split < 1.: if any(K.is_tensor(t) for t in x): raise ValueError( 'If your data is in the form of symbolic tensors, ' 'you cannot use `validation_split`.') do_validation = True if hasattr(x[0], 'shape'): split_at = int(int(x[0].shape[0]) * (1. - validation_split)) else: split_at = int(len(x[0]) * (1. - validation_split)) x, val_x = (slice_arrays(x, 0, split_at), slice_arrays(x, split_at)) y, val_y = (slice_arrays(y, 0, split_at), slice_arrays(y, split_at)) sample_weights, val_sample_weights = ( slice_arrays(sample_weights, 0, split_at), slice_arrays(sample_weights, split_at)) if self._uses_dynamic_learning_phase(): val_inputs = val_x + val_y + val_sample_weights + [0.] else: val_inputs = val_x + val_y + val_sample_weights elif validation_steps: do_validation = True if self._uses_dynamic_learning_phase(): val_inputs = [0.]为训练准备输入数组和训练函数。训练函数的输入是这种形式的元组:(x, y, sample_weights) 或者 (x, y, sample_weights, lr),其中,x: 训练数据, y: 标签, sample_weights: 样本权重, lr: 学习速率。
if self._uses_dynamic_learning_phase(): fit_inputs = x + y + sample_weights + [1.] else: fit_inputs = x + y + sample_weights self._make_train_function() fit_function = self.train_function out_labels = self.metrics_names 准备输验证函数: if do_validation: self._make_test_function() val_function = self.test_function callback_metrics = copy.copy(out_labels) + [ 'val_' + n for n in out_labels] else: callback_metrics = copy.copy(out_labels) val_function = None val_inputs = [] 由training_arrays.fit_loop实现循环训练逻辑: return training_arrays.fit_loop(self, fit_function, fit_inputs, out_labels=out_labels, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=callbacks, val_function=val_function, val_inputs=val_inputs, shuffle=shuffle, callback_metrics=callback_metrics, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps)三、evaluate: 模型评估。在测试模式下对模型进行评估,按batch计算模型的误差损失值和其它可能的评估指标量。其代码逻辑与fit类似。
def evaluate(self, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None): 对用户输入的数据进行校验,并转换成适合模型处理的标准数据格式 x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight, batch_size=batch_size) 为评估准备输入数组和测试函数 if self._uses_dynamic_learning_phase(): ins = x + y + sample_weights + [0.] else: ins = x + y + sample_weights self._make_test_function() f = self.test_function 由training_arrays.test_loop实现循环评估逻辑: return training_arrays.test_loop(self, f, ins, batch_size=batch_size, verbose=verbose, steps=steps)四、predict:预测。对输入的数据x进行预测,输出为对应的预测值(numpy array)
def predict(self, x, batch_size=None, verbose=0, steps=None): 对用户输入的数据进行校验,并转换成适合模型处理的标准数据格式 x, _, _ = self._standardize_user_data(x) if self.stateful: if x[0].shape[0] > batch_size and x[0].shape[0] % batch_size != 0: raise ValueError('In a stateful network, ' 'you should only pass inputs with ' 'a number of samples that can be ' 'divided by the batch size. Found: ' + str(x[0].shape[0]) + ' samples. ' 'Batch size: ' + str(batch_size) + '.') 为预测准备输入数组和预测函数 if self._uses_dynamic_learning_phase(): ins = x + [0.] else: ins = x self._make_predict_function() 由training_arrays.predict_loop实现预测逻辑: f = self.predict_function return training_arrays.predict_loop(self, f, ins, batch_size=batch_size, verbose=verbose, steps=steps)