把Model类放在training.py文件中,说明它肯定与训练有关,由下面Model的定义我们知道,它继承自Network,所以,Model具有Network和训练的功能,此外它还具有什么功能呢?
在Model类主要有四大功能模块: compile, fit, evaluate和predict。下面,我们来一步步解析。
class Model(Network):
一、compile:模型编译。用于配置训练模型。用compile接受的每一个参数对model进行配置。
def compile(self, optimizer,
loss=None,
metrics=None,
loss_weights=None,
sample_weight_mode=None,
weighted_metrics=None,
target_tensors=None,
**kwargs):
self.optimizer = optimizers.get(optimizer)
self.loss = loss or []
self.metrics = metrics or []
self.loss_weights = loss_weights
self.sample_weight_mode = sample_weight_mode
self.weighted_metrics = weighted_metrics处理参数loss,准备损失函数(loss functions)。有2种情形:(1) 传入的loss是个损失函数的字典或列表,它对应着模型的多个输出,在每个输出上使用不同的损失;
(2) loss只是一个损失函数的名称,如果模型有多个输出,则所有的输出都使用相同的损失函数。
不管是哪种,模型最小化的损失值将是所有单个损失的总和。
if isinstance(loss, dict):
loss_functions = []
for name in self.output_names:
loss_functions.append(losses.get(loss.get(name)))
elif isinstance(loss, list):
loss_functions = [losses.get(l) for l in loss]
else:
loss_function = losses.get(loss)
loss_functions = [loss_function for _ in range(len(self.outputs))]
self.loss_functions = loss_functions
weighted_losses = [
weighted_masked_objective(fn) for fn in loss_functions]
skip_target_indices = []
skip_target_weighing_indices = []
self._feed_outputs = []
self._feed_output_names = []
self._feed_output_shapes = []
self._feed_loss_fns = []
for i in range(len(weighted_losses)):
if weighted_losses[i] is None:
skip_target_indices.append(i)
skip_target_weighing_indices.append(i)处理损失权重loss_weights,它是用以衡量损失函数对不同的模型输出的贡献。 模型将最小化的误差值是由 loss_weights 对每个输出上的损失进行加权的加权总和误差。if loss_weights is None:
loss_weights_list = [1. for _ in range(len(self.outputs))]
elif isinstance(loss_weights, dict):
loss_weights_list = []
for name in self.output_names:
loss_weights_list.append(loss_weights.get(name, 1.))
elif isinstance(loss_weights, list):
loss_weights_list = loss_weights
else:
raise TypeError('Could not interpret loss_weights argument: ')处理target_tensors,创建模型的目标(targets of model)。如果传入的参数target_tensors不为None,即下面的code,说明要使用外部指定的目标张量,它可以是单个张量(单输出模型),张量列表,或一个映射输出名称到目标张量的字典。
self.targets = []
self._feed_targets = []
if target_tensors is not None:
if isinstance(target_tensors, list):
elif isinstance(target_tensors, dict):
tmp_target_tensors = []
for name in self.output_names:
tmp_target_tensors.append(target_tensors.get(name, None))
target_tensors = tmp_target_tensors
elif K.is_tensor(target_tensors):
target_tensors = [target_tensors]
else:
raise TypeError('Expected `target_tensors` to be a tensor')如果target_tensors为None(默认情况),更或者是其中的某个为None,Keras 将为模型的目标创建一个占位符,在训练过程中将使用目标数据。for i in range(len(self.outputs)):
if i in skip_target_indices:
self.targets.append(None)
else:
shape = K.int_shape(self.outputs[i])
name = self.output_names[i]
if target_tensors is not None:
target = target_tensors[i]
else:
target = None
if target is None or K.is_placeholder(target):
if target is None:
target = K.placeholder(
ndim=len(shape),
name=name + '_target',
sparse=K.is_sparse(self.outputs[i]),
dtype=K.dtype(self.outputs[i]))
self._feed_targets.append(target)
self._feed_outputs.append(self.outputs[i])
self._feed_output_names.append(name)
self._feed_output_shapes.append(shape)
self._feed_loss_fns.append(self.loss_functions[i])
else:
skip_target_weighing_indices.append(i)
self.targets.append(target)处理样本权重模式sample_weight_mode,有两种情况: (1) temporal: 即表示要执行按时间步采样权重(2D权重);
(2) None,这是默认,为采样权重(1D)。
如果模型有多个输出,则可以传递一个 mode 字典或列表,以指示在每个输出上使用指定的sample_weight_mode。
sample_weights = []
sample_weight_modes = []
if isinstance(sample_weight_mode, dict):
for i, name in enumerate(self.output_names):
if i in skip_target_weighing_indices:
weight = None
sample_weight_modes.append(None)
else:
if sample_weight_mode.get(name) == 'temporal':
weight = K.placeholder(ndim=2,
name=name + '_sample_weights')
sample_weight_modes.append('temporal')
else:
weight = K.placeholder(ndim=1,
name=name + '_sample_weights')
sample_weight_modes.append(None)
sample_weights.append(weight)
elif isinstance(sample_weight_mode, list):
for i in range(len(self.output_names)):
if i in skip_target_weighing_indices:
weight = None
sample_weight_modes.append(None)
else:
mode = sample_weight_mode[i]
name = self.output_names[i]
if mode == 'temporal':
weight = K.placeholder(ndim=2,
name=name + '_sample_weights')
sample_weight_modes.append('temporal')
else:
weight = K.placeholder(ndim=1,
name=name + '_sample_weights')
sample_weight_modes.append(None)
sample_weights.append(weight)
else:
for i, name in enumerate(self.output_names):
if i in skip_target_weighing_indices:
sample_weight_modes.append(None)
sample_weights.append(None)
else:
if sample_weight_mode == 'temporal':
sample_weights.append(
K.placeholder(ndim=2,
name=name + '_sample_weights'))
sample_weight_modes.append('temporal')
else:
sample_weights.append(
K.placeholder(ndim=1,
name=name + '_sample_weights'))
sample_weight_modes.append(None)
self.sample_weight_modes = sample_weight_modes
self._feed_sample_weight_modes = []
for i in range(len(self.outputs)):
if i not in skip_target_weighing_indices:
self._feed_sample_weight_modes.append(
self.sample_weight_modes[i])
self.metrics_names = ['loss']
self.metrics_tensors = []计算总损失(total loss): dot(output_loss, loss_weight) + self.lossestotal_loss = None
with K.name_scope('loss'):
for i in range(len(self.outputs)):
if i in skip_target_indices:
continue
y_true = self.targets[i]
y_pred = self.outputs[i]
weighted_loss = weighted_losses[i]
sample_weight = sample_weights[i]
mask = masks[i]
loss_weight = loss_weights_list[i]
with K.name_scope(self.output_names[i] + '_loss'):
output_loss = weighted_loss(y_true, y_pred,
sample_weight, mask)
if len(self.outputs) > 1:
self.metrics_tensors.append(output_loss)
self.metrics_names.append(self.output_names[i] + '_loss')
if total_loss is None:
total_loss = loss_weight * output_loss
else:
total_loss += loss_weight * output_loss
if total_loss is None:
if not self.losses:
raise ValueError('The model cannot be compiled '
'because it has no loss to optimize.')
else:
total_loss = 0.
for loss_tensor in self.losses:
total_loss += loss_tensor处理metrics,metrics指定了训练和测试期间的模型评估指标。可以为多输出模型的不同输出指定不同的评估指标,它可以是一个dict字典或list列表,如 metrics = {'output_a':'accuracy'}。通常指标名称可以用全名,如:accuracy,crossentropy等,也可能简写,如:acc,ce等。nested_metrics = collect_metrics(metrics, self.output_names)
nested_weighted_metrics = collect_metrics(weighted_metrics,
self.output_names)
self.metrics_updates = []
self.stateful_metric_names = []
self.stateful_metric_functions = []
def handle_metrics(metrics, weights=None):
metric_name_prefix = 'weighted_' if weights is not None else ''
for metric in metrics:
if metric in ('accuracy', 'acc', 'crossentropy', 'ce'):
output_shape = K.int_shape(self.outputs[i])
if (output_shape[-1] == 1 or
self.loss_functions[i] == losses.binary_crossentropy):
if metric in ('accuracy', 'acc'):
metric_fn = metrics_module.binary_accuracy
elif metric in ('crossentropy', 'ce'):
metric_fn = metrics_module.binary_crossentropy
elif (self.loss_functions[i] ==
losses.sparse_categorical_crossentropy):
if metric in ('accuracy', 'acc'):
metric_fn = metrics_module.sparse_categorical_accuracy
elif metric in ('crossentropy', 'ce'):
metric_fn = (
metrics_module.sparse_categorical_crossentropy)
else:
if metric in ('accuracy', 'acc'):
metric_fn = metrics_module.categorical_accuracy
elif metric in ('crossentropy', 'ce'):
metric_fn = metrics_module.categorical_crossentropy
if metric in ('accuracy', 'acc'):
suffix = 'acc'
elif metric in ('crossentropy', 'ce'):
suffix = 'ce'
weighted_metric_fn = weighted_masked_objective(metric_fn)
metric_name = metric_name_prefix + suffix
else:
metric_fn = metrics_module.get(metric)
weighted_metric_fn = weighted_masked_objective(metric_fn)
if hasattr(metric_fn, 'name'):
metric_name = metric_fn.name
else:
metric_name = metric_fn.__name__
metric_name = metric_name_prefix + metric_name
with K.name_scope(metric_name):
metric_result = weighted_metric_fn(y_true, y_pred,
weights=weights,
mask=masks[i])
if len(self.output_names) > 1:
metric_name = self.output_names[i] + '_' + metric_name
j = 1
base_metric_name = metric_name
while metric_name in self.metrics_names:
metric_name = base_metric_name + '_' + str(j)
j += 1
self.metrics_names.append(metric_name)
self.metrics_tensors.append(metric_result)
if isinstance(metric_fn, Layer) and metric_fn.stateful:
self.stateful_metric_names.append(metric_name)
self.stateful_metric_functions.append(metric_fn)
self.metrics_updates += metric_fn.updates
with K.name_scope('metrics'):
for i in range(len(self.outputs)):
if i in skip_target_indices:
continue
y_true = self.targets[i]
y_pred = self.outputs[i]
weights = sample_weights[i]
output_metrics = nested_metrics[i]
output_weighted_metrics = nested_weighted_metrics[i]
handle_metrics(output_metrics)
handle_metrics(output_weighted_metrics, weights=weights)
为梯度和状态更新做准备
self.total_loss = total_loss
self.sample_weights = sample_weights
self._feed_sample_weights = []
for i in range(len(self.sample_weights)):
if i not in skip_target_weighing_indices:
self._feed_sample_weights.append(sample_weights[i])
为了节省时间,对于训练函数、测试函数和预测函数设置的惰性编译
self._function_kwargs = kwargs
self.train_function = None
self.test_function = None
self.predict_function = None
trainable_weights = self.trainable_weights
self._collected_trainable_weights = trainable_weights二、fit:模型训练。在所有的fit参数中,x为训练数据,y为标签数据,validation_split指定有多少比例的训练数据用作验证数据,validation_data为验证数据集,epochs为训练轮次,batch_size为批大小。
def fit(self,
x=None,
y=None,
batch_size=None,
epochs=1,
verbose=1,
callbacks=None,
validation_split=0.,
validation_data=None,
shuffle=True,
class_weight=None,
sample_weight=None,
initial_epoch=0,
steps_per_epoch=None,
validation_steps=None,
**kwargs):
对用户输入的数据进行校验,并转换成适合模型处理的标准数据格式
x, y, sample_weights = self._standardize_user_data(
x, y,
sample_weight=sample_weight,
class_weight=class_weight,
batch_size=batch_size)处理验证数据:有两种情况:
(1)是否需要验证:通过置do_validation决定,缺省是False,即不需要;但如果传入了参数validation_data或者validation_split或者validation_steps,则do_validation=True,意味着需要验证;
(2)验证数据产生,与下面if分支相对应:
a)由参数validation_data直接传入;否则
b)由validation_split指定一个划分比例,从训练数据中分出一部分作为验证数据;否则
c)当指定了validation_steps,一般与steps_per_epoch结合使用,这里validation_data则为测试数据和验证数据的生成器,本参数指定验证数据生成器的返回次数。
验证函数的输入是这种形式的元组:(val_x, val_y, val_sample_weights)或者(val_x, val_y, val_sample_weights, lr),其中,val_x: 验证数据, val_y: 验证数据标签, val_sample_weights: 样本权重, lr: 学习速率。
do_validation = False
if validation_data:
do_validation = True
if len(validation_data) == 2:
val_x, val_y = validation_data
val_sample_weight = None
elif len(validation_data) == 3:
val_x, val_y, val_sample_weight = validation_data
else:
raise ValueError('When passing validation_data, '
'it must contain 2 (x_val, y_val) '
'or 3 (x_val, y_val, val_sample_weights) '
'items, however it contains %d items' %
len(validation_data))
val_x, val_y, val_sample_weights = self._standardize_user_data(
val_x, val_y,
sample_weight=val_sample_weight,
batch_size=batch_size)
if self._uses_dynamic_learning_phase():
val_inputs = val_x + val_y + val_sample_weights + [0.]
else:
val_inputs = val_x + val_y + val_sample_weights
elif validation_split and 0. < validation_split < 1.:
if any(K.is_tensor(t) for t in x):
raise ValueError(
'If your data is in the form of symbolic tensors, '
'you cannot use `validation_split`.')
do_validation = True
if hasattr(x[0], 'shape'):
split_at = int(int(x[0].shape[0]) * (1. - validation_split))
else:
split_at = int(len(x[0]) * (1. - validation_split))
x, val_x = (slice_arrays(x, 0, split_at),
slice_arrays(x, split_at))
y, val_y = (slice_arrays(y, 0, split_at),
slice_arrays(y, split_at))
sample_weights, val_sample_weights = (
slice_arrays(sample_weights, 0, split_at),
slice_arrays(sample_weights, split_at))
if self._uses_dynamic_learning_phase():
val_inputs = val_x + val_y + val_sample_weights + [0.]
else:
val_inputs = val_x + val_y + val_sample_weights
elif validation_steps:
do_validation = True
if self._uses_dynamic_learning_phase():
val_inputs = [0.]
为训练准备输入数组和训练函数。训练函数的输入是这种形式的元组:(x, y, sample_weights) 或者 (x, y, sample_weights, lr),其中,x: 训练数据, y: 标签, sample_weights: 样本权重, lr: 学习速率。
if self._uses_dynamic_learning_phase():
fit_inputs = x + y + sample_weights + [1.]
else:
fit_inputs = x + y + sample_weights
self._make_train_function()
fit_function = self.train_function
out_labels = self.metrics_names
准备输验证函数:
if do_validation:
self._make_test_function()
val_function = self.test_function
callback_metrics = copy.copy(out_labels) + [
'val_' + n for n in out_labels]
else:
callback_metrics = copy.copy(out_labels)
val_function = None
val_inputs = []
由training_arrays.fit_loop实现循环训练逻辑:
return training_arrays.fit_loop(self, fit_function, fit_inputs,
out_labels=out_labels,
batch_size=batch_size,
epochs=epochs,
verbose=verbose,
callbacks=callbacks,
val_function=val_function,
val_inputs=val_inputs,
shuffle=shuffle,
callback_metrics=callback_metrics,
initial_epoch=initial_epoch,
steps_per_epoch=steps_per_epoch,
validation_steps=validation_steps)三、evaluate: 模型评估。在测试模式下对模型进行评估,按batch计算模型的误差损失值和其它可能的评估指标量。其代码逻辑与fit类似。
def evaluate(self, x=None, y=None,
batch_size=None,
verbose=1,
sample_weight=None,
steps=None):
对用户输入的数据进行校验,并转换成适合模型处理的标准数据格式
x, y, sample_weights = self._standardize_user_data(
x, y,
sample_weight=sample_weight,
batch_size=batch_size)
为评估准备输入数组和测试函数
if self._uses_dynamic_learning_phase():
ins = x + y + sample_weights + [0.]
else:
ins = x + y + sample_weights
self._make_test_function()
f = self.test_function
由training_arrays.test_loop实现循环评估逻辑:
return training_arrays.test_loop(self, f, ins,
batch_size=batch_size,
verbose=verbose,
steps=steps)四、predict:预测。对输入的数据x进行预测,输出为对应的预测值(numpy array)
def predict(self, x,
batch_size=None,
verbose=0,
steps=None):
对用户输入的数据进行校验,并转换成适合模型处理的标准数据格式
x, _, _ = self._standardize_user_data(x)
if self.stateful:
if x[0].shape[0] > batch_size and x[0].shape[0] % batch_size != 0:
raise ValueError('In a stateful network, '
'you should only pass inputs with '
'a number of samples that can be '
'divided by the batch size. Found: ' +
str(x[0].shape[0]) + ' samples. '
'Batch size: ' + str(batch_size) + '.')
为预测准备输入数组和预测函数
if self._uses_dynamic_learning_phase():
ins = x + [0.]
else:
ins = x
self._make_predict_function()
由training_arrays.predict_loop实现预测逻辑:
f = self.predict_function
return training_arrays.predict_loop(self, f, ins,
batch_size=batch_size,
verbose=verbose,
steps=steps)
没有评论:
发表评论