要读写这些数据源,首先需要创建SparkSession: import os from pyspark.sql import SparkSession, Row spark = SparkSession.builder \ .appName("Demo data sources") \ .getOrCreate() 为便于演示,我们构造一个DataFrame: data = [Row(Country="France",Age=44,Salary=72000,Purchased="No"), Row(Country="Spain",Age=27,Salary=48000,Purchased="Yes"), Row(Country="Germany",Age=30,Salary=54000,Purchased="No"), Row(Country="Spain",Age=38,Salary=61000,Purchased="No"), Row(Country="Germany",Age=40,Salary=65000,Purchased="Yes"), Row(Country="France",Age=35,Salary=58000,Purchased="Yes"), Row(Country="Spain",Age=27,Salary=52000,Purchased="No"), Row(Country="France",Age=48,Salary=79000,Purchased="Yes"), Row(Country="Germany",Age=50,Salary=83000,Purchased="No"), Row(Country="France",Age=37,Salary=67000,Purchased="Yes")] df = spark.createDataFrame(data) df.show() 运行结果: +---+-------+---------+------+ |Age|Country|Purchased|Salary| +---+-------+---------+------+ | 44| France| No| 72000| | 27| Spain| Yes| 48000| | 30|Germany| No| 54000| | 38| Spain| No| 61000| | 40|Germany| Yes| 65000| | 35| France| Yes| 58000| | 27| Spain| No| 52000| | 48| France| Yes| 79000| | 50|Germany| No| 83000| | 37| France| Yes| 67000| +---+-------+---------+------+ 将dataframe数据集保存为csv, json, parquet和HIVE Table格式文件: df.write.csv("data/demo.csv", mode='overwrite', header=True) df.write.json("data/demo.json", mode = 'ignore') df.write.parquet("data/demo.parquet", mode = 'ignore') df.write.saveAsTable("demo") 创建一个临时表:customers,它是随同spark Session存在的: df.createOrReplaceTempView("customers") 查看(用HIVE SQL)有哪些表: spark.sql("show tables").show() +--------+---------+-----------+ |database|tableName|isTemporary| +--------+---------+-----------+ | default| demo| false| | |customers| true| +--------+---------+-----------+ 用HIVE SQL查询表: spark.sql("SELECT * FROM customers WHERE Salary > 60000").show() +---+-------+---------+------+ |Age|Country|Purchased|Salary| +---+-------+---------+------+ | 44| France| No| 72000| | 38| Spain| No| 61000| | 40|Germany| Yes| 65000| | 48| France| Yes| 79000| | 50|Germany| No| 83000| | 37| France| Yes| 67000| +---+-------+---------+------+ spark.sql("SELECT * FROM customers WHERE Country='France'").show() +---+-------+---------+------+ |Age|Country|Purchased|Salary| +---+-------+---------+------+ | 44| France| No| 72000| | 35| France| Yes| 58000| | 48| France| Yes| 79000| | 37| France| Yes| 67000| +---+-------+---------+------+ 读txt文件,内容将放在value字段中: df = spark.read.text("data/demo.csv") df.show(3) +--------------------+ | value| +--------------------+ |Age,Country,Purch...| | 27,Spain,No,52000| | 48,France,Yes,79000| +--------------------+ only showing top 3 rows 读csv文件(csv文件中可能包含有字段名称信息的文件头,但数据类型需要推断,你也可以显式指定): df = spark.read.csv("data/demo.csv", inferSchema = True, header = True) df.show(3) +---+-------+---------+------+ |Age|Country|Purchased|Salary| +---+-------+---------+------+ | 27| Spain| No| 52000| | 48| France| Yes| 79000| | 50|Germany| No| 83000| +---+-------+---------+------+ only showing top 3 rows 读json文件(json文件中包含的字段的名称,但数据类型需要推断,你也可以显式指定): df = spark.read.json("data/demo.json") df.show(3) +---+-------+---------+------+ |Age|Country|Purchased|Salary| +---+-------+---------+------+ | 44| France| No| 72000| | 27| Spain| Yes| 48000| | 30|Germany| No| 54000| +---+-------+---------+------+ only showing top 3 rows 读parquet文件(parquet文件中保存了数据结构的元信息): df = spark.read.parquet("data/demo.parquet") df.show(3) +-------+---+------+---------+ |Country|Age|Salary|Purchased| +-------+---+------+---------+ | France| 44| 72000| No| | Spain| 27| 48000| Yes| |Germany| 30| 54000| No| +-------+---+------+---------+ only showing top 3 rows
2019年1月24日星期四
大数据之数据存取:Spark存取文件系统数据源
我们常见的数据文件包括:csv, json, txt和parquet等。Spark对这些文件的读写都提供了内建的支持。
2019年1月23日星期三
大数据之数据存取:从HDFS读excel文件到pandas dataframe
难点:pandas不能直接从hdfs读excel文件。
解决方案:先读excel文件内容到RDD,然后把RDD内容从cluster传回本地,最后调用pandas.read_excel()方法
步骤:
(1)设置pyspark环境
import os
import sys
spark_home = os.environ.get('SPARK_HOME', None)
if not spark_home:
raise ValueError('SPARK_HOME environment variable is not set')
sys.path.insert(0, os.path.join(spark_home, 'python'))
# sys.path.insert(0, os.path.join(spark_home, 'python/lib/py4j-0.10.7-src.zip'))
(2)创建spark context
from pyspark import SparkConf, SparkContext
conf = SparkConf().setAppName('Read Excel File on HDFS to Pandas Dataframe')
sc = SparkContext(conf=conf)
(3)读excel文件内容到RDD
rdd = sc.binaryFiles("/HomeProject/my-demo/demo.xlsx")
(4)把RDD内容从cluster传回本地
arr = rdd.collect()
(4)调用pandas.read_excel()方法读文件内容到pandas dataframe
import io
import pandas as pd
df = pd.read_excel(io.BytesIO(arr[0][1]), header = 0)
df.head(5)
解决方案:先读excel文件内容到RDD,然后把RDD内容从cluster传回本地,最后调用pandas.read_excel()方法
步骤:
(1)设置pyspark环境
import os
import sys
spark_home = os.environ.get('SPARK_HOME', None)
if not spark_home:
raise ValueError('SPARK_HOME environment variable is not set')
sys.path.insert(0, os.path.join(spark_home, 'python'))
# sys.path.insert(0, os.path.join(spark_home, 'python/lib/py4j-0.10.7-src.zip'))
(2)创建spark context
from pyspark import SparkConf, SparkContext
conf = SparkConf().setAppName('Read Excel File on HDFS to Pandas Dataframe')
sc = SparkContext(conf=conf)
(3)读excel文件内容到RDD
rdd = sc.binaryFiles("/HomeProject/my-demo/demo.xlsx")
(4)把RDD内容从cluster传回本地
arr = rdd.collect()
(4)调用pandas.read_excel()方法读文件内容到pandas dataframe
import io
import pandas as pd
df = pd.read_excel(io.BytesIO(arr[0][1]), header = 0)
df.head(5)
2019年1月12日星期六
Keras源码分析(10):Model
文件:/keras/engine/training.py
把Model类放在training.py文件中,说明它肯定与训练有关,由下面Model的定义我们知道,它继承自Network,所以,Model具有Network和训练的功能,此外它还具有什么功能呢?
在Model类主要有四大功能模块: compile, fit, evaluate和predict。下面,我们来一步步解析。
class Model(Network):
一、compile:模型编译。用于配置训练模型。用compile接受的每一个参数对model进行配置。
(1) 传入的loss是个损失函数的字典或列表,它对应着模型的多个输出,在每个输出上使用不同的损失;
(2) loss只是一个损失函数的名称,如果模型有多个输出,则所有的输出都使用相同的损失函数。
不管是哪种,模型最小化的损失值将是所有单个损失的总和。
如果传入的参数target_tensors不为None,即下面的code,说明要使用外部指定的目标张量,它可以是单个张量(单输出模型),张量列表,或一个映射输出名称到目标张量的字典。
(1) temporal: 即表示要执行按时间步采样权重(2D权重);
(2) None,这是默认,为采样权重(1D)。
如果模型有多个输出,则可以传递一个 mode 字典或列表,以指示在每个输出上使用指定的sample_weight_mode。
二、fit:模型训练。在所有的fit参数中,x为训练数据,y为标签数据,validation_split指定有多少比例的训练数据用作验证数据,validation_data为验证数据集,epochs为训练轮次,batch_size为批大小。
处理验证数据:有两种情况:
(1)是否需要验证:通过置do_validation决定,缺省是False,即不需要;但如果传入了参数validation_data或者validation_split或者validation_steps,则do_validation=True,意味着需要验证;
(2)验证数据产生,与下面if分支相对应:
a)由参数validation_data直接传入;否则
b)由validation_split指定一个划分比例,从训练数据中分出一部分作为验证数据;否则
c)当指定了validation_steps,一般与steps_per_epoch结合使用,这里validation_data则为测试数据和验证数据的生成器,本参数指定验证数据生成器的返回次数。
验证函数的输入是这种形式的元组:(val_x, val_y, val_sample_weights)或者(val_x, val_y, val_sample_weights, lr),其中,val_x: 验证数据, val_y: 验证数据标签, val_sample_weights: 样本权重, lr: 学习速率。
把Model类放在training.py文件中,说明它肯定与训练有关,由下面Model的定义我们知道,它继承自Network,所以,Model具有Network和训练的功能,此外它还具有什么功能呢?
在Model类主要有四大功能模块: compile, fit, evaluate和predict。下面,我们来一步步解析。
class Model(Network):
一、compile:模型编译。用于配置训练模型。用compile接受的每一个参数对model进行配置。
def compile(self, optimizer, loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, target_tensors=None, **kwargs): self.optimizer = optimizers.get(optimizer) self.loss = loss or [] self.metrics = metrics or [] self.loss_weights = loss_weights self.sample_weight_mode = sample_weight_mode self.weighted_metrics = weighted_metrics处理参数loss,准备损失函数(loss functions)。有2种情形:
(1) 传入的loss是个损失函数的字典或列表,它对应着模型的多个输出,在每个输出上使用不同的损失;
(2) loss只是一个损失函数的名称,如果模型有多个输出,则所有的输出都使用相同的损失函数。
不管是哪种,模型最小化的损失值将是所有单个损失的总和。
if isinstance(loss, dict): loss_functions = [] for name in self.output_names: loss_functions.append(losses.get(loss.get(name))) elif isinstance(loss, list): loss_functions = [losses.get(l) for l in loss] else: loss_function = losses.get(loss) loss_functions = [loss_function for _ in range(len(self.outputs))] self.loss_functions = loss_functions weighted_losses = [ weighted_masked_objective(fn) for fn in loss_functions] skip_target_indices = [] skip_target_weighing_indices = [] self._feed_outputs = [] self._feed_output_names = [] self._feed_output_shapes = [] self._feed_loss_fns = [] for i in range(len(weighted_losses)): if weighted_losses[i] is None: skip_target_indices.append(i) skip_target_weighing_indices.append(i)处理损失权重loss_weights,它是用以衡量损失函数对不同的模型输出的贡献。 模型将最小化的误差值是由 loss_weights 对每个输出上的损失进行加权的加权总和误差。
if loss_weights is None: loss_weights_list = [1. for _ in range(len(self.outputs))] elif isinstance(loss_weights, dict): loss_weights_list = [] for name in self.output_names: loss_weights_list.append(loss_weights.get(name, 1.)) elif isinstance(loss_weights, list): loss_weights_list = loss_weights else: raise TypeError('Could not interpret loss_weights argument: ')处理target_tensors,创建模型的目标(targets of model)。
如果传入的参数target_tensors不为None,即下面的code,说明要使用外部指定的目标张量,它可以是单个张量(单输出模型),张量列表,或一个映射输出名称到目标张量的字典。
self.targets = [] self._feed_targets = [] if target_tensors is not None: if isinstance(target_tensors, list): elif isinstance(target_tensors, dict): tmp_target_tensors = [] for name in self.output_names: tmp_target_tensors.append(target_tensors.get(name, None)) target_tensors = tmp_target_tensors elif K.is_tensor(target_tensors): target_tensors = [target_tensors] else: raise TypeError('Expected `target_tensors` to be a tensor')如果target_tensors为None(默认情况),更或者是其中的某个为None,Keras 将为模型的目标创建一个占位符,在训练过程中将使用目标数据。
for i in range(len(self.outputs)): if i in skip_target_indices: self.targets.append(None) else: shape = K.int_shape(self.outputs[i]) name = self.output_names[i] if target_tensors is not None: target = target_tensors[i] else: target = None if target is None or K.is_placeholder(target): if target is None: target = K.placeholder( ndim=len(shape), name=name + '_target', sparse=K.is_sparse(self.outputs[i]), dtype=K.dtype(self.outputs[i])) self._feed_targets.append(target) self._feed_outputs.append(self.outputs[i]) self._feed_output_names.append(name) self._feed_output_shapes.append(shape) self._feed_loss_fns.append(self.loss_functions[i]) else: skip_target_weighing_indices.append(i) self.targets.append(target)处理样本权重模式sample_weight_mode,有两种情况:
(1) temporal: 即表示要执行按时间步采样权重(2D权重);
(2) None,这是默认,为采样权重(1D)。
如果模型有多个输出,则可以传递一个 mode 字典或列表,以指示在每个输出上使用指定的sample_weight_mode。
sample_weights = [] sample_weight_modes = [] if isinstance(sample_weight_mode, dict): for i, name in enumerate(self.output_names): if i in skip_target_weighing_indices: weight = None sample_weight_modes.append(None) else: if sample_weight_mode.get(name) == 'temporal': weight = K.placeholder(ndim=2, name=name + '_sample_weights') sample_weight_modes.append('temporal') else: weight = K.placeholder(ndim=1, name=name + '_sample_weights') sample_weight_modes.append(None) sample_weights.append(weight) elif isinstance(sample_weight_mode, list): for i in range(len(self.output_names)): if i in skip_target_weighing_indices: weight = None sample_weight_modes.append(None) else: mode = sample_weight_mode[i] name = self.output_names[i] if mode == 'temporal': weight = K.placeholder(ndim=2, name=name + '_sample_weights') sample_weight_modes.append('temporal') else: weight = K.placeholder(ndim=1, name=name + '_sample_weights') sample_weight_modes.append(None) sample_weights.append(weight) else: for i, name in enumerate(self.output_names): if i in skip_target_weighing_indices: sample_weight_modes.append(None) sample_weights.append(None) else: if sample_weight_mode == 'temporal': sample_weights.append( K.placeholder(ndim=2, name=name + '_sample_weights')) sample_weight_modes.append('temporal') else: sample_weights.append( K.placeholder(ndim=1, name=name + '_sample_weights')) sample_weight_modes.append(None) self.sample_weight_modes = sample_weight_modes self._feed_sample_weight_modes = [] for i in range(len(self.outputs)): if i not in skip_target_weighing_indices: self._feed_sample_weight_modes.append( self.sample_weight_modes[i]) self.metrics_names = ['loss'] self.metrics_tensors = []计算总损失(total loss): dot(output_loss, loss_weight) + self.losses
total_loss = None with K.name_scope('loss'): for i in range(len(self.outputs)): if i in skip_target_indices: continue y_true = self.targets[i] y_pred = self.outputs[i] weighted_loss = weighted_losses[i] sample_weight = sample_weights[i] mask = masks[i] loss_weight = loss_weights_list[i] with K.name_scope(self.output_names[i] + '_loss'): output_loss = weighted_loss(y_true, y_pred, sample_weight, mask) if len(self.outputs) > 1: self.metrics_tensors.append(output_loss) self.metrics_names.append(self.output_names[i] + '_loss') if total_loss is None: total_loss = loss_weight * output_loss else: total_loss += loss_weight * output_loss if total_loss is None: if not self.losses: raise ValueError('The model cannot be compiled ' 'because it has no loss to optimize.') else: total_loss = 0. for loss_tensor in self.losses: total_loss += loss_tensor处理metrics,metrics指定了训练和测试期间的模型评估指标。可以为多输出模型的不同输出指定不同的评估指标,它可以是一个dict字典或list列表,如 metrics = {'output_a':'accuracy'}。通常指标名称可以用全名,如:accuracy,crossentropy等,也可能简写,如:acc,ce等。
nested_metrics = collect_metrics(metrics, self.output_names) nested_weighted_metrics = collect_metrics(weighted_metrics, self.output_names) self.metrics_updates = [] self.stateful_metric_names = [] self.stateful_metric_functions = [] def handle_metrics(metrics, weights=None): metric_name_prefix = 'weighted_' if weights is not None else '' for metric in metrics: if metric in ('accuracy', 'acc', 'crossentropy', 'ce'): output_shape = K.int_shape(self.outputs[i]) if (output_shape[-1] == 1 or self.loss_functions[i] == losses.binary_crossentropy): if metric in ('accuracy', 'acc'): metric_fn = metrics_module.binary_accuracy elif metric in ('crossentropy', 'ce'): metric_fn = metrics_module.binary_crossentropy elif (self.loss_functions[i] == losses.sparse_categorical_crossentropy): if metric in ('accuracy', 'acc'): metric_fn = metrics_module.sparse_categorical_accuracy elif metric in ('crossentropy', 'ce'): metric_fn = ( metrics_module.sparse_categorical_crossentropy) else: if metric in ('accuracy', 'acc'): metric_fn = metrics_module.categorical_accuracy elif metric in ('crossentropy', 'ce'): metric_fn = metrics_module.categorical_crossentropy if metric in ('accuracy', 'acc'): suffix = 'acc' elif metric in ('crossentropy', 'ce'): suffix = 'ce' weighted_metric_fn = weighted_masked_objective(metric_fn) metric_name = metric_name_prefix + suffix else: metric_fn = metrics_module.get(metric) weighted_metric_fn = weighted_masked_objective(metric_fn) if hasattr(metric_fn, 'name'): metric_name = metric_fn.name else: metric_name = metric_fn.__name__ metric_name = metric_name_prefix + metric_name with K.name_scope(metric_name): metric_result = weighted_metric_fn(y_true, y_pred, weights=weights, mask=masks[i]) if len(self.output_names) > 1: metric_name = self.output_names[i] + '_' + metric_name j = 1 base_metric_name = metric_name while metric_name in self.metrics_names: metric_name = base_metric_name + '_' + str(j) j += 1 self.metrics_names.append(metric_name) self.metrics_tensors.append(metric_result) if isinstance(metric_fn, Layer) and metric_fn.stateful: self.stateful_metric_names.append(metric_name) self.stateful_metric_functions.append(metric_fn) self.metrics_updates += metric_fn.updates with K.name_scope('metrics'): for i in range(len(self.outputs)): if i in skip_target_indices: continue y_true = self.targets[i] y_pred = self.outputs[i] weights = sample_weights[i] output_metrics = nested_metrics[i] output_weighted_metrics = nested_weighted_metrics[i] handle_metrics(output_metrics) handle_metrics(output_weighted_metrics, weights=weights) 为梯度和状态更新做准备 self.total_loss = total_loss self.sample_weights = sample_weights self._feed_sample_weights = [] for i in range(len(self.sample_weights)): if i not in skip_target_weighing_indices: self._feed_sample_weights.append(sample_weights[i]) 为了节省时间,对于训练函数、测试函数和预测函数设置的惰性编译 self._function_kwargs = kwargs self.train_function = None self.test_function = None self.predict_function = None trainable_weights = self.trainable_weights self._collected_trainable_weights = trainable_weights
二、fit:模型训练。在所有的fit参数中,x为训练数据,y为标签数据,validation_split指定有多少比例的训练数据用作验证数据,validation_data为验证数据集,epochs为训练轮次,batch_size为批大小。
def fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0., validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, **kwargs): 对用户输入的数据进行校验,并转换成适合模型处理的标准数据格式 x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight, class_weight=class_weight, batch_size=batch_size)
处理验证数据:有两种情况:
(1)是否需要验证:通过置do_validation决定,缺省是False,即不需要;但如果传入了参数validation_data或者validation_split或者validation_steps,则do_validation=True,意味着需要验证;
(2)验证数据产生,与下面if分支相对应:
a)由参数validation_data直接传入;否则
b)由validation_split指定一个划分比例,从训练数据中分出一部分作为验证数据;否则
c)当指定了validation_steps,一般与steps_per_epoch结合使用,这里validation_data则为测试数据和验证数据的生成器,本参数指定验证数据生成器的返回次数。
验证函数的输入是这种形式的元组:(val_x, val_y, val_sample_weights)或者(val_x, val_y, val_sample_weights, lr),其中,val_x: 验证数据, val_y: 验证数据标签, val_sample_weights: 样本权重, lr: 学习速率。
do_validation = False if validation_data: do_validation = True if len(validation_data) == 2: val_x, val_y = validation_data val_sample_weight = None elif len(validation_data) == 3: val_x, val_y, val_sample_weight = validation_data else: raise ValueError('When passing validation_data, ' 'it must contain 2 (x_val, y_val) ' 'or 3 (x_val, y_val, val_sample_weights) ' 'items, however it contains %d items' % len(validation_data)) val_x, val_y, val_sample_weights = self._standardize_user_data( val_x, val_y, sample_weight=val_sample_weight, batch_size=batch_size) if self._uses_dynamic_learning_phase(): val_inputs = val_x + val_y + val_sample_weights + [0.] else: val_inputs = val_x + val_y + val_sample_weights elif validation_split and 0. < validation_split < 1.: if any(K.is_tensor(t) for t in x): raise ValueError( 'If your data is in the form of symbolic tensors, ' 'you cannot use `validation_split`.') do_validation = True if hasattr(x[0], 'shape'): split_at = int(int(x[0].shape[0]) * (1. - validation_split)) else: split_at = int(len(x[0]) * (1. - validation_split)) x, val_x = (slice_arrays(x, 0, split_at), slice_arrays(x, split_at)) y, val_y = (slice_arrays(y, 0, split_at), slice_arrays(y, split_at)) sample_weights, val_sample_weights = ( slice_arrays(sample_weights, 0, split_at), slice_arrays(sample_weights, split_at)) if self._uses_dynamic_learning_phase(): val_inputs = val_x + val_y + val_sample_weights + [0.] else: val_inputs = val_x + val_y + val_sample_weights elif validation_steps: do_validation = True if self._uses_dynamic_learning_phase(): val_inputs = [0.]为训练准备输入数组和训练函数。训练函数的输入是这种形式的元组:(x, y, sample_weights) 或者 (x, y, sample_weights, lr),其中,x: 训练数据, y: 标签, sample_weights: 样本权重, lr: 学习速率。
if self._uses_dynamic_learning_phase(): fit_inputs = x + y + sample_weights + [1.] else: fit_inputs = x + y + sample_weights self._make_train_function() fit_function = self.train_function out_labels = self.metrics_names 准备输验证函数: if do_validation: self._make_test_function() val_function = self.test_function callback_metrics = copy.copy(out_labels) + [ 'val_' + n for n in out_labels] else: callback_metrics = copy.copy(out_labels) val_function = None val_inputs = [] 由training_arrays.fit_loop实现循环训练逻辑: return training_arrays.fit_loop(self, fit_function, fit_inputs, out_labels=out_labels, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=callbacks, val_function=val_function, val_inputs=val_inputs, shuffle=shuffle, callback_metrics=callback_metrics, initial_epoch=initial_epoch, steps_per_epoch=steps_per_epoch, validation_steps=validation_steps)三、evaluate: 模型评估。在测试模式下对模型进行评估,按batch计算模型的误差损失值和其它可能的评估指标量。其代码逻辑与fit类似。
def evaluate(self, x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None): 对用户输入的数据进行校验,并转换成适合模型处理的标准数据格式 x, y, sample_weights = self._standardize_user_data( x, y, sample_weight=sample_weight, batch_size=batch_size) 为评估准备输入数组和测试函数 if self._uses_dynamic_learning_phase(): ins = x + y + sample_weights + [0.] else: ins = x + y + sample_weights self._make_test_function() f = self.test_function 由training_arrays.test_loop实现循环评估逻辑: return training_arrays.test_loop(self, f, ins, batch_size=batch_size, verbose=verbose, steps=steps)四、predict:预测。对输入的数据x进行预测,输出为对应的预测值(numpy array)
def predict(self, x, batch_size=None, verbose=0, steps=None): 对用户输入的数据进行校验,并转换成适合模型处理的标准数据格式 x, _, _ = self._standardize_user_data(x) if self.stateful: if x[0].shape[0] > batch_size and x[0].shape[0] % batch_size != 0: raise ValueError('In a stateful network, ' 'you should only pass inputs with ' 'a number of samples that can be ' 'divided by the batch size. Found: ' + str(x[0].shape[0]) + ' samples. ' 'Batch size: ' + str(batch_size) + '.') 为预测准备输入数组和预测函数 if self._uses_dynamic_learning_phase(): ins = x + [0.] else: ins = x self._make_predict_function() 由training_arrays.predict_loop实现预测逻辑: f = self.predict_function return training_arrays.predict_loop(self, f, ins, batch_size=batch_size, verbose=verbose, steps=steps)
2019年1月4日星期五
Keras源码分析(9):Network
文件:/keras/engine/network.py
在前面我们讨论Node的作用时说过,Node对象把层和层,输入和输出联结了起来,最终把一个多层网络连成了一个有向无环图(DAG),而Network对象正是实现这样的过程。
class Network(Layer):
首先,要说明的是,它为什么要继承自Layer,应该有这样几点:
(1)因为它要生成一个有向无环图(DAG),有入口也有出口,有输入也有输出,这一点跟Layer是一致的;
(2)它生成有向无环图(DAG)的目的是为了计算,为了触发DAG进行计算,就需要提供一个函数给外部调用,这个函数就是call, 这一点跟Layer也是一致的;
(3)模型作为一个Layer可嵌套使用。
由上可见,DAG图的构建实际上是由调用_init_graph_network完成的。下面我们略去了Network作为Layer的有关代码后,它的主要逻辑也看得很清楚了。它进一步调用位于同一文件中的外部_map_graph_network,从而获得了关键的几个数据结构nodes, nodes_by_depth, layers, layers_by_depth,并把它们保存到对象的相应的成员变量中。
到此build_map结束,开始准备调用build_map函数。首先,初始化finished_nodes和nodes_in_progress,然后,从outputs循环开始调用build_map函数,按反向递归构建DAG图。
(1)network_nodes:所有nodes集合;
(2)layer_indices:layer->index字典;
(3)nodes_in_decreasing_depth:按遍历顺序保存的nodes列表。
其中结果(1)将被_map_graph_network返回,我们仍需用(2)和(3)来构建节点的深度、按深度递减的层列表和层的深度,即:nodes_by_depth, layers, layers_by_depth。
Network继承自Layer,所以计算也是由Network对象的call方法完成。为了减少重复计算的开销,Network对象对同一inputs和masks的计算结果进行了缓存(self._output_tensor_cache),如果已计算过了,则直接从缓存中取出;如果没有,则调用内部方法self.run_internal_graph进行计算。
在前面我们讨论Node的作用时说过,Node对象把层和层,输入和输出联结了起来,最终把一个多层网络连成了一个有向无环图(DAG),而Network对象正是实现这样的过程。
class Network(Layer):
首先,要说明的是,它为什么要继承自Layer,应该有这样几点:
(1)因为它要生成一个有向无环图(DAG),有入口也有出口,有输入也有输出,这一点跟Layer是一致的;
(2)它生成有向无环图(DAG)的目的是为了计算,为了触发DAG进行计算,就需要提供一个函数给外部调用,这个函数就是call, 这一点跟Layer也是一致的;
(3)模型作为一个Layer可嵌套使用。
DAG图的构建是在Network对象实例化时完成的。 def __init__(self, *args, **kwargs): if (len(args) == 2 or len(args) == 1 and 'outputs' in kwargs or 'inputs' in kwargs and 'outputs' in kwargs): self._init_graph_network(*args, **kwargs) else: self._init_subclassed_network(**kwargs)
由上可见,DAG图的构建实际上是由调用_init_graph_network完成的。下面我们略去了Network作为Layer的有关代码后,它的主要逻辑也看得很清楚了。它进一步调用位于同一文件中的外部_map_graph_network,从而获得了关键的几个数据结构nodes, nodes_by_depth, layers, layers_by_depth,并把它们保存到对象的相应的成员变量中。
def _init_graph_network(self, inputs, outputs, name=None): ...... self.inputs = to_list(inputs, allow_tuple=True) self.outputs = to_list(outputs, allow_tuple=True) ...... nodes, nodes_by_depth, layers, layers_by_depth = _map_graph_network( self.inputs, self.outputs) self._network_nodes = nodes self._nodes_by_depth = nodes_by_depth self._layers = layers self._layers_by_depth = layers_by_depth ...... 现在,我们来看看_map_graph_network的代码: def _map_graph_network(inputs, outputs): # 初始化几个数据结构用来保存与所要创建的图相关的nodes和layers信息 network_nodes = set() # ids of all nodes relevant to the Network nodes_depths = {} # dict {node: depth value} layers_depths = {} # dict {layer: depth value} layer_indices = {} # dict {layer: index in traversal} nodes_in_decreasing_depth = [] 下面build_map内部数据是一个递归函数,它是要从传入的tensor开始反向递归构建DAG图。 在递归构建过程中,那些相关的node将呈现下列3种状态中的一种: (1)已完成(finished_nodes) (2)进行中(nodes_in_progress) (3)将要处理(layer._inbound_nodes[node_index]) 所有这些都作为参数传给了build_map函数。 def build_map(tensor, finished_nodes, nodes_in_progress, layer, node_index, tensor_index): # 获得将要处理的node node = layer._inbound_nodes[node_index] # 检查nodes_in_progress以避免环 if node in nodes_in_progress: raise ValueError('The tensor ' + str(tensor) + ' at layer "' + layer.name + '" is part of a cycle.') # 防止重复劳动 if node in finished_nodes: return # 更新外层network_nodes集合 node_key = _make_node_key(layer.name, node_index) network_nodes.add(node_key) # 更新外层layer_indices字典 if layer not in layer_indices: layer_indices[layer] = len(layer_indices) # 开始处理该node nodes_in_progress.add(node) # 深度优先搜索那些连接到当前node的输入方向上的tensors for i in range(len(node.inbound_layers)): x = node.input_tensors[i] layer = node.inbound_layers[i] node_index = node.node_indices[i] tensor_index = node.tensor_indices[i] build_map(x, finished_nodes, nodes_in_progress, layer, node_index, tensor_index) # 处理完毕,将当前node加到finished_nodes中, # 并从nodes_in_progress中移出 finished_nodes.add(node) nodes_in_progress.remove(node) # 这是最为关键一步,它将所有nodes的遍历深度保存到 # 队列nodes_in_decreasing_depth中,此队列将是后 # 续正向计算和误差反向传播执行的依据 nodes_in_decreasing_depth.append(node)
到此build_map结束,开始准备调用build_map函数。首先,初始化finished_nodes和nodes_in_progress,然后,从outputs循环开始调用build_map函数,按反向递归构建DAG图。
finished_nodes = set() nodes_in_progress = set() for x in outputs: layer, node_index, tensor_index = x._keras_history build_map(x, finished_nodes, nodes_in_progress, layer=layer, node_index=node_index, tensor_index=tensor_index)上述调用build_map函数产生了3个结果:
(1)network_nodes:所有nodes集合;
(2)layer_indices:layer->index字典;
(3)nodes_in_decreasing_depth:按遍历顺序保存的nodes列表。
其中结果(1)将被_map_graph_network返回,我们仍需用(2)和(3)来构建节点的深度、按深度递减的层列表和层的深度,即:nodes_by_depth, layers, layers_by_depth。
# 根据nodes_in_decreasing_depth计算 # 节点到深度的映射nodes_depths:node->depth, # 以及层到深度的映射layers_depths:layer->depth for node in reversed(nodes_in_decreasing_depth): depth = nodes_depths.setdefault(node, 0) previous_depth = layers_depths.get(node.outbound_layer, 0) depth = max(depth, previous_depth) layers_depths[node.outbound_layer] = depth nodes_depths[node] = depth for i in range(len(node.inbound_layers)): inbound_layer = node.inbound_layers[i] node_index = node.node_indices[i] inbound_node = inbound_layer._inbound_nodes[node_index] previous_depth = nodes_depths.get(inbound_node, 0) nodes_depths[inbound_node] = max(depth + 1, previous_depth) # 按深度对节点进行分组,即:depth->nodes,从而得到nodes_by_depth nodes_by_depth = {} for node, depth in nodes_depths.items(): if depth not in nodes_by_depth: nodes_by_depth[depth] = [] nodes_by_depth[depth].append(node) # 按深度对层进行分组,即:depth->layers,从而得到layers_by_depth layers_by_depth = {} for layer, depth in layers_depths.items(): if depth not in layers_by_depth: layers_by_depth[depth] = [] layers_by_depth[depth].append(layer) # 按深度下降的顺序组织排列所有层 depth_keys = list(layers_by_depth.keys()) depth_keys.sort(reverse=True) layers = [] for depth in depth_keys: layers_for_depth = layers_by_depth[depth] # 如果深度相同,则按遍历的顺序 layers_for_depth.sort(key=lambda x: layer_indices[x]) layers.extend(layers_for_depth) ...... 返回节点的集合、节点的深度、按深度递减的层列表和层的深度 return network_nodes, nodes_by_depth, layers, layers_by_depth
Network继承自Layer,所以计算也是由Network对象的call方法完成。为了减少重复计算的开销,Network对象对同一inputs和masks的计算结果进行了缓存(self._output_tensor_cache),如果已计算过了,则直接从缓存中取出;如果没有,则调用内部方法self.run_internal_graph进行计算。
def call(self, inputs, mask=None): inputs = to_list(inputs) if mask is None: masks = [None for _ in range(len(inputs))] else: masks = to_list(mask) cache_key = object_list_uid(inputs) cache_key += '_' + object_list_uid(masks) if cache_key in self._output_tensor_cache: return self._output_tensor_cache[cache_key] else: output_tensors, _, _ = self.run_internal_graph(inputs, masks) return output_tensors # 根据inputs计算network的输出tensors。 def run_internal_graph(self, inputs, masks=None): if masks is None: masks = [None for _ in range(len(inputs))] # tensor_map中存放所有已计算过的tensors和masks # 用传入的inputs和masks初始化tensor_map tensor_map = {} for x, y, mask in zip(self.inputs, inputs, masks): tensor_map[str(id(x))] = (y, mask) # 依深度递减遍历 depth_keys = list(self._nodes_by_depth.keys()) depth_keys.sort(reverse=True) for depth in depth_keys: nodes = self._nodes_by_depth[depth] for node in nodes: layer = node.outbound_layer reference_input_tensors = node.input_tensors reference_output_tensors = node.output_tensors # 检查reference_input_tensors中的所有tensors是否都在tensor_map中 # 即是否都已计算过了,把其中已计算过的放进computed_data computed_data = [] # List of tuples (input, mask). for x in reference_input_tensors: if str(id(x)) in tensor_map: computed_data.append(tensor_map[str(id(x))]) # 检查的方法是比较computed_data和reference_input_tensors中元素的个数是否相等 if len(computed_data) == len(reference_input_tensors): # 相等则表示当前layer的所有input_tensors都已计算过了,所以可以调用layer.call方法了 with K.name_scope(layer.name): if node.arguments: kwargs = node.arguments else: kwargs = {} if len(computed_data) == 1: computed_tensor, computed_mask = computed_data[0] if has_arg(layer.call, 'mask'): if 'mask' not in kwargs: kwargs['mask'] = computed_mask output_tensors = to_list( layer.call(computed_tensor, **kwargs)) output_masks = layer.compute_mask(computed_tensor, computed_mask) if output_masks is None: output_masks = [None for _ in output_tensors] else: output_masks = to_list(output_masks) computed_tensors = [computed_tensor] computed_masks = [computed_mask] else: computed_tensors = [x[0] for x in computed_data] computed_masks = [x[1] for x in computed_data] if has_arg(layer.call, 'mask'): if 'mask' not in kwargs: kwargs['mask'] = computed_masks output_tensors = to_list( layer.call(computed_tensors, **kwargs)) output_masks = layer.compute_mask(computed_tensors, computed_masks) if output_masks is None: output_masks = [None for _ in output_tensors] else: output_masks = to_list(output_masks) if (hasattr(layer, 'activity_regularizer') and layer.activity_regularizer is not None): with K.name_scope('activity_regularizer'): regularization_losses = [ layer.activity_regularizer(x) for x in output_tensors] layer.add_loss(regularization_losses, inputs=computed_tensors) ...... # 把当前计算过的output_tensors和output_masks加入到tensor_map中 for x, y, mask in zip(reference_output_tensors, output_tensors, output_masks): tensor_map[str(id(x))] = (y, mask) # 从tensor_map提取output_tensors和output_masks # 从output_tensors中提到output_shapes output_tensors = [] output_masks = [] output_shapes = [] for x in self.outputs: assert str(id(x)) in tensor_map, 'Could not compute output ' + str(x) tensor, mask = tensor_map[str(id(x))] if hasattr(tensor, '_keras_shape') and output_shapes is not None: shape = tensor._keras_shape output_shapes.append(shape) else: output_shapes = None output_tensors.append(tensor) output_masks.append(mask) return output_tensors, output_masks, output_shapes
订阅:
博文 (Atom)